Exercise 1:

Company Database

```
employee(fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno)
deptartment( dname, dnumber, mgrssn, mgrstartdate)
dept_locations( dnumber, dlocation)
project(pname, pnumber, plocation, dnum)
works_on(essn, pno, hours
dependent(essn, dependent_name, sex, bdate, relationship)
```

- 1. Retrieve the names of all employees in department 5 who work more than 10 hours per week on the 'ProductX' project.
 - (a) Join first.

```
emp\_all \leftarrow employee \bowtie_{ssn=essn} works\_on \bowtie_{pno=pnumber} project

emp\_OK \leftarrow \sigma_{dno=5 \ and \ pname='ProductX' \ and \ hours>10.0}(emp\_all)

answer \leftarrow \pi_{fname,minit,lname}(emp\_OK)
```

(b) Selects first.

```
\begin{split} &emp\_Dept\_5 \leftarrow \sigma_{dno=5}(employee) \\ &proj\_Prod\_X \leftarrow \sigma_{pname='ProductX'}(project) \\ &emp\_Dept\_5\_Prod\_X \leftarrow emp\_Dept_5 \bowtie_{ssn=essn} works\_on \bowtie_{pno=pnumber} proj\_Prod\_X \\ &emp\_OK \leftarrow \sigma_{hours>10.0}(emp\_Dept\_5\_Prod\_X) \\ &answer \leftarrow \pi_{fname,minit,lname}(emp\_OK) \end{split}
```

2. List the names of all employees who have a dependent with the same first name as themselves.

```
emp\_with\_Deps \leftarrow employee \bowtie_{ssn=essn\ and\ fname=dependent\_name} dependent
answer \leftarrow \pi_{fname,minit,lname}(emp\_with\_Deps)
```

3. Find the names of all employees who are directly supervised by 'Franklin Wong'.

```
wong\_SSN \leftarrow \pi_{ssn}(\sigma_{lname='Wong'\ and\ fname='Franklin'}(employee))

answer \leftarrow \pi_{fname.minit.lname}(employee \bowtie_{superssn=ssn} wong\_ssn)
```

4. For each project, list the project name and the total hours per week (by all employees) spent on that project.

```
proj\_hours(pno, total\_hours) \leftarrow_{pno} \mathcal{F}_{sum\ hours}(works\_on)

answer \leftarrow \pi_{pname,total\_hours}(projs\_hours \bowtie_{pno=pnumber} project)
```

5. Retrieve the names of all employees who work on every project.

```
emp\_proj(ssn, pnumber) \leftarrow \pi_{essn,pno}(works\_on)

proj \leftarrow \pi_{pnumber}(projects)

answer \leftarrow \pi_{fname,minit,lname}((emp\_proj \div proj) * employees)
```

6. Retrieve the names of all employees who do not work on any project.

```
emps\_on\_projs(ssn) \leftarrow \pi_{essn}(works\_on)

emps\_on\_projs\_with\_names \leftarrow emps\_on\_projs * employee

answer \leftarrow \pi_{fname\_minit.lname}(employees - emps\_on\_projs\_with\_names)
```

7. For each department, retrieve the department name and the average salary of all employees working in that department.

```
dept\_with\_avgsal(dnumber, avgsal) \leftarrow_{dno} \mathcal{F}_{avg\ salary}(employee)

answer \leftarrow \pi_{dname.avgsal}(dept\_with\_avgsal * department)
```

8. Retrieve the average salary of all female employees.

```
answer \leftarrow \mathcal{F}_{avg\ salary}(\sigma_{sex='female'}(employee))
```

9. Find the names and addresses of all employees who work on at least one project located in Houston, but whose department has no location in Houston.

```
emps\_work\_in\_Houston \leftarrow \pi_{fname,minit,lname,address}(\sigma_{plocation='Houston'}(employee *_{(ssn),(essn)} works\_on *_{(pno),(pnumnber)} project))
```

10. List the names of all department managers who have no dependents.

```
\begin{aligned} dept\_mgrs(ssn) \leftarrow \pi_{mgrssn}(department) \\ emps\_with\_deps(ssn) \leftarrow \pi_{essn}(dependent) \\ answer \leftarrow \pi_{fname,minit,lname}(employee*(dept\_mgrs-emps\_with\_deps)) \end{aligned}
```

Exercise 2

A) How many copies of the book titled The Lost Tribe are owned by the library branch whose name is 'Sharpstown'?

```
Sharps_id \leftarrow \pi_{\text{Branch\_id}}(\sigma_{\text{Branch\_name='Sharpstown'}}(\text{Library\_Branch}))

Tribe_id \leftarrow \pi_{\text{Book\_id}}(\sigma_{\text{Title='The Lost Tribe'}}(\text{Book}))

Answer \leftarrow \pi_{\text{No\_of\_copies}}(\text{Book\_Copies} * \text{Sharps\_id} * \text{Tribe\_id})
```

B)

How many copies of the book titled 'The Lost Tribe' are owned by each library branch?

```
\begin{split} & THE\_LOST\_TRIBE \longleftarrow \sigma_{\ Title=`The\ Lost\ Tribe'}, (BOOK) \\ & RESULT \longleftarrow \pi_{\ BranchId,\ No-Of\_Copies} (THE\_LOST\_TRIBE * BOOK\_COPIES) \end{split}
```

C) Retrieve the names of all borrowers who do not have any books checked out

None_id
$$\leftarrow \pi_{\text{Card_no}}(\text{Borrower}) - \pi_{\text{Card_no}}(\text{Book_Loans})$$

Answer $\leftarrow \pi_{\text{Name}}(\text{Borrower} * \text{None_id})$

D)

For each book that is loaned out from the 'Sharpstown' branch and whose DueDate is today, retrieve the book title, the borrower's name, and the borrower's address.

```
\begin{split} & ST \longleftarrow \pi_{\,BranchId}(\sigma_{\,BranchName=\,\,\,\,\,}(LIBRARY\_BRANCH)) \\ & DUE\_TODAY \longleftarrow \sigma_{\,DueDate=\,\,\,\,\,\,}(BOOK\_LOANS) \\ & ST\_BOOKS \longleftarrow \pi_{\,BookId,\,CardNo}(ST\ *\ DUE\_TODAY) \\ & RESULT \longleftarrow \pi_{\,Title,\,Name,\,Address}(BOOK\ *\ ST\_BOOKS\ *\ BORROWER) \end{split}
```

E)

For each library branch, retrieve the branch name and the total number of books loaned out from that branch.

```
LOANED_B ← BranchId & Count BookId (BOOK_LOANS)

RESULT ← π BranchName, Count_BookId (LOANED_B * LIBRARY_BRANCH)
```

f) Retrieve the names, addresses, and number of books checked out for all borrowers who have more than five books checked out

```
 \begin{array}{lll} Loan\_counts & \leftarrow & \rho_{(Card\_no,Book\_count)}(_{Card\_no} \Im_{Count(Book\_id)}(Book\_Loans)) \\ Big\_borrowers & \leftarrow & \sigma_{Book\_count>5}(Loan\_counts) \\ & Answer & \leftarrow & \pi_{Name,Address,Book\_count}(Big\_borrowers*Borrower) \end{array}
```

g)

For each book authored (or coauthored) by 'Stephen King,' retrieve the title and the number of copies owned by the library branch whose name is 'Central.'

```
\begin{array}{l} SK \longleftarrow \sigma_{AuthorName=`Stephen\ King}, (BOOK\_AUTHORS) \\ SK\_B \longleftarrow \pi_{BookId,\ Title} (SK * BOOK) \\ CENTRAL \longleftarrow \sigma_{BranchName=`Central'}, (LIBRARY\_BRANCH) \\ RESULT \longleftarrow \pi_{Title,\ No\_Of\_Copies} (SK\_B * BOOK\_COPIES * CENRAL) \end{array}
```